首页> 外文OA文献 >Soybean Crop Area Estimation Through Image Classification Normalized By The Error Matrix [estimativa De área De Soja Por Classificação De Imagens Normalizada Pela Matriz De Erros]
【2h】

Soybean Crop Area Estimation Through Image Classification Normalized By The Error Matrix [estimativa De área De Soja Por Classificação De Imagens Normalizada Pela Matriz De Erros]

机译:通过误差矩阵归一化的图像分类法估算大豆作物面积[通过误差矩阵归一化的图像分类法估算大豆面积]

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat-5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a "soybean mask". Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called "direct expansion". Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner.
机译:这项工作的目的是通过对TM / Landsat-5影像的监督分类所产生的误差矩阵进行归一化来估计大豆作物的面积。使用来自2003/2004作物季节的数据对巴西巴拉那州的八个城市进行了评估。使用平行六面体和最大似然方法进行分类,从而产生“大豆面膜”。八个城市的Kappa指数值均高于0.6。通过误差矩阵校正的估计大豆面积与该州的官方估计以及通过称为“直接扩展”的替代方法生成的估计高度相关。通过误差矩阵归一化进行的大豆作物面积估计成本较低,并且可以帮助主观方法以较少主观的方式估计收成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号